IZSEZVEZ ANE®

DDOS MITIGATION EXPERIENCE

01.

About IP ServerOne

About IP ServerOne

- Founded in 2003
- **52** Employees
- Managing over 4500 physical servers
- Total **150** Racks in **5** data centers

across Malaysia and Singapore

- Contributing **10%** of Malaysia's domestic traffic
- Approximately 6.8 Gbit/s total traffic sending to the Internet at peak
- 300 Gbps DDoS mitigation capacity in MY, SG, HK, TW

What is a DDoS attack?

Why choosing this topic?

01

 We believe that everyone should be more aware of DDoS attacks and their possible impacts on a business

02 · To share on the DDoS trend happening in our local community

03 • To share the possible ways to **detect** any kind of DDoS attack, and help to blackhole the affected IP addresses automatically with opensource utility

04 · Giving an idea of IPSERVERONE's anti-ddos system deployment in our own data centers

A cyberattack carried out over networks that intentionally is done by someone

In short, it's a downtime to the provider

Or

a downtime to the customer

What is the level of attacks we encounter?

Which types of attack we mostly get?

Attacks from international link:

Bandwidth level attack:

International link is around 81 Gbit/s

Packet per second (pps) attack:

16.6 Mbps, bandwidth is approximately 6.6 Gbps

Attacks from Malaysia's peering

Bandwidth level attack:

12 Gbps from single provider

Packet per second (pps) attack:

10.6 Mbps, bandwidth is approximately 4.9 Gbps

DDoS activity within Malaysia

A DDoS alert report sample on a local attack

📒 Total Traffic of Target IP <table-cell-rows> Attack Event Traffic 🕂 Threshold

Maximum		Average		Current	
bps pps		bps pps		bps pps	
4.9G	10.6M	2.7G	5.8M	-	-

A new way of DDoS attack (via Direct Peering)

Spoofed IP	Source: 45.64.168.254:80
Destination: 210.5.40.0 – 210.5.47.25	54 (all ISP B IP addresses)
Destination: 183.81.160.0 – 183.81.16	67.254 (all ISP A IP addresses)
Destination Port: 80,443,22,21	TCP Flag: SYN

The impacts from this new method attack:

01

02

03

 The attacker can control how to flow the attack to the victim network; For example: Via MyIX? Or direct peering & etc.

 The ISP A, or ISP B think that the victim server is attacking all their IP address range.

 ISP A, or ISP B will not be able to do any blackhole as all of their IP

addresses are affected.

04

• Victim ISP cannot react to it as the packet was spoofed from outside of the victim network.

Solutions for these kind of attacks:

Make sure you have enough bandwidth to take the spoofed packet

Apply ACL, or using Flowspec to **mitigate this issue**

To sleep better

Q		Image: Construction of the second sec
DDoS detection tool	To do tcpdump / nfdump when you	A Dedicated Blackhole router
must be available	are under-attack it's	that integrates with
	way too slow	ExaBGP can make the NOCs' lives easier

03.

How do we detect a DDoS attack?

How do we detect a DDoS attack:

We use **netflow** to detect any kind of DDoS attack

NTA Monitor Alert Reports					
Overview Regions Routers Router Interface G	Groups IP Routing Table Traffic auto-learning	Machine Status			5 📕 Site Map
Monitor / Routers					
Top Routers A					
Displayed Content: TOP 5 V Flow V Sorting Order: Ma	aximum 🔻 Incoming Traffic 💌 bps 🔻			Time Rang	ge: Real-time Last 1 hour Last Day This week Custom
10G			4M		
Ž 5C −			2 M -		
affic(bps			0 -		
Trait and the second					
는 또 5G -			2M -		
			2 M -		
	00:10 00:15 00:20 00:25	00:30 00:35 00:40 00:45	4M 23:50 23:55 7. Šep 00:05	00:10 00:15 00:20 00:25	00:30 00:35 00:40 00:45
2 sG − 10G 23:50 23:55 7. Sep 00:05	00:10 00:15 00:20 00:25 IMS CX2−INTL-GW01 Cx2−MYIX-10G Aims-	00:30 00:35 00:40 00:45	⁴ M 23:55 7. Śep 00:05	00:10 00:15 00:20 00:25 M5 — CX2-INTL-GW01 — Cx2-MYIX-10G — A	
≤ 5G 10C 23:50 23:55 7. Šep 00:05 ■ EquinixIX ■ MYIX-All	IMS 🦲 CX2-INTL-GW01 🛑 Cx2-MYIX-10G 📕 Aims-	00:30 00:35 00:40 00:45	⁴ M 23:55 7. Śep 00:05		
SG - 10G _{23:50} 23:55 7. Šep 00:05 ■ EquinixIX ■ MYIX-All		00:30 00:35 00:40 00:45 Core-RT02-Cisco	⁴ M 23:55 7. Śep 00:05	MS — CX2-INTL-GW01 🛑 Cx2-MYIX-10G 💻 A	
K 5G - 10G ₂₃ :50 23:55 7. Sep 00:05 ■ EquinixIX ■ MYIX-AII Device Name	IMS 🦲 CX2-INTL-GW01 🛑 Cx2-MYIX-10G 📕 Aims-	00 [:] 30 00 [:] 35 00 [:] 40 00 [:] 45 :Core-RT02-Cisco Rx(bps/pps)	^{4M} 23:50 23:55 7. Šep 00:05 EquinixIX MYIX-AI	MS CX2-INTL-GW01 Cx2-MYIX-10G A	ims-Core-RT02-Cisco
SG - 10C _{23:50} 23:55 7. Sep 00:05 EquinixIX MYDX-All Device Name Sx2-MYDX-10G	IMS 🦲 CX2-INTL-GW01 🛑 Cx2-MYIX-10G 📕 Aims-	00:30 00:35 00:40 00:45 Core-RT02-Cisco Rx(bps/pps) Maximum	4M 23:50 23:55 7. Šep 00:05 EquinixIX MYIX-AI Average	MS CX2-INTL-GW01 Cx2-MYIX-10G A Tx(bps/pps) Maximum	ims-Core-RT02-Cisco Average
x 5G - 10G _{23:50} 23:55 7. Sep 00:05 ■ EquinixIX ■ MYDX-All Device Name 5x2-MYIX-10G 5x2-INTL-GW01	IMS 🦲 CX2-INTL-GW01 🛑 Cx2-MYIX-10G 📕 Aims-	00:30 00:35 00:40 00:45 Core-RT02-Cisco	4M _{23:50} 23:55 7. 5ep 00:05 ■ EquinixIX ■ MYIX-AI Average 2.4G/780.8K	MS CX2-INTL-GW01 CX2-MYIX-10G A T(bps/pps) Maximum 3.5G/1M	ims-Core-RT02-Cisco Average 2.4G/780.8K
SG − 10G 23:50 23:55 7. Sep 00:05	IMS 🦲 CX2-INTL-GW01 🛑 Cx2-MYIX-10G 📕 Aims-	00:30 00:35 00:40 00:45 Core-RT02-Cisco	4M _{23:50} 23:55 7. 5ep 00:05 ■ EquinixIX ■ MYDX-AI Average 2.4G/780.8K 1.1G/280.1K	MS CX2-INTL-GW01 Cx2-MYIX-10G A T(bps/pps) Maximum 3.5G/1M 1.9G/415.3K	ims-Core-RT02-Cisco Average 2.4G/780.8K 1.1G/280.1K

Detector deployment architecture

- 1. We use out of path deployment
- 2. **NTA** will collect flow from all the border routers
- 3. Traffic will pass through normally from:

border > core router > access > switch > server

How does a detector work?

The detector will look at the **netflow packet** and will count for **the number of packet per seconds** towards single destination IP address.

In layman term, it will count how many:

SYN packet received per second for single IP
 ACK packet received per second for single IP
 DNS packet received per second for single IP
 NTP packet received per second for single IP
 UDP packet received per second for single IP
 (and many many more)

Detector Threshold setting

We categorize all our IP addresses into Multiple IP address groups

Alert Type	Detect Mode *	Threshold (bps/pps)	Alert Hierarchy (%)		Diversion Level	
Alon Type		Latent Alert Threshold	Direct Alert Threshold	Medium	High	Difficience
SYN FLOOD	Packets only	0/10.0K	0/20.0K	150	200	Divert Traffic of Low-level Alert
ACK FLOOD	Packets only	0/20.0K	0/40.0K	150	200	Divert Traffic of Low-level Alert
UDP FLOOD	Packets only	0/10.0K	0/20.0K	150	200	Divert Traffic of Low-level Alert
ICMP FLOOD	Packets only	0/10.0K	0/20.0K	150	200	Divert Traffic of Low-level Alert
IGMP FLOOD	Packets only	0/10.0K	0/20.0K	150	200	Divert Traffic of Low-level Alert
PROTOCOL NULL FLOOD	Packets only	0/10.0K	0/20.0K	150	200	Divert Traffic of Low-level Alert
TCPFLAG MISUSE FLOOD	Packets only	0/10.0K	0/20.0K	150	200	Divert Traffic of Low-level Alert
TCPFLAG NULL FLOOD	Packets only	0/10.0K	0/20.0K	150	200	Divert Traffic of Low-level Alert
HTTP flood	Packets only	0/100.0K	0/200.0K	150	200	Divert Traffic of Low-level Alert
HTTPS FLOOD	Packets only	0/100.0K	0/200.0K	150	200	Divert Traffic of Low-level Alert
DNS REQUEST FLOOD	Packets only	0/10.0K	0/20.0K	150	200	Divert Traffic of Low-level Alert
DNS RESPONSE FLOOD	Packets only	0/10.0K	0/20.0K	150	200	Divert Traffic of Low-level Alert
LAND FLOOD	Packets only	0/10.0K	0/20.0K	150	200	Divert Traffic of Low-level Alert
SIP FLOOD	Packets only	0/10.0K	0/20.0K	150	200	Divert Traffic of Low-level Alert
DARK IP ABNORMAL	Packets only	0/10.0K	0/20.0K	150	200	Divert Traffic of Low-level Alert
PRIVATE IP ABNORMAL	Packets only	0/10.0K	0/20.0K	150	200	Divert Traffic of Low-level Alert
NTP REFLECTION FLOOD	Packets only	0/20.0K	0/40.0K	150	200	Divert Traffic of Low-level Alert
SSDP REFLECTION	Packets only	0/10.0K	0/20.0K	150	200	Divert Traffic of Low-level Alert

Each IP Group would contain its own IP range and threshold setting

DDoS detector also detects based on bandwidth

Besides Packet Per second check, it will also check for: **maximum inbound bandwidth** per second for single IP

NTA	Monitor Alert	Reports Logs	Configuration	Administratio	n				
Objects - Ale	rt Configuration Templ	ate 👻 🛛 Global Alert :	Settings Global (Divert Settings	Flow Settings	Data Di	ctionary 👻		
TCPFLAG MISUSE FLOOD	Packets only	0/10.0K		0/20.0K			150	200	Divert Traffic of Low-level Alert
TCPFLAG NULL FLOOD	Packets only	0/ 10.0 K		0/20.0K			150	200	Divert Traffic of Low-level Alert
HTTP flood	Packets only	0/100.0K		0/200.0K			150	200	Divert Traffic of Low-level Alert
HTTPS FLOOD	Packets only	0/100.0K		0/200.0K			150	200	Divert Traffic of Low-level Alert
DNS REQUEST FLOOD	Packets only	0/10.0K		0/20.0K			150	200	Divert Traffic of Low-level Alert
DNS RESPONSE FLOOD	Packets only	0/10.0K		0/20.0K			150	200	Divert Traffic of Low-level Alert
LAND FLOOD	Packets only	0/ 10.0K		0/20.0K			150	200	Divert Traffic of Low-level Alert
SIP FLOOD	Packets only	0/10.0K		0/20.0K			150	200	Divert Traffic of Low-level Alert
DARK IP ABNORMAL	Packets only	0/10.0K		0/20.0K			150	200	Divert Traffic of Low-level Alert
PRIVATE IP ABNORMAL	Packets only	0/10.0K		0/20.0K			150	200	Divert Traffic of Low-level Alert
NTP REFLECTION FLOOD	Packets only	0/20.0K		0/ 40.0K			150	200	Divert Traffic of Low-level Alert
SSDP REFLECTION FLOOD	Packets only	0 /10.0K		0/20.0K			150	200	Divert Traffic of Low-level Alert
SNMP REFLECTION FLOOD	Packets only	0/ 10.0K		0/20.0K			150	200	Divert Traffic of Low-level Alert
CHARGEN REFLECTION FLOOD	Packets only	0/10.0K		0/20.0K			150	200	Divert Traffic of Low-level Alert
TRAFFIC ABNORMAL	Bytes only	150.0M/0		200.0M/0			150	200	Divert Traffic of Low-level Alert

Open-source utility that can do a DDoS Detection:

When a DDoS is detected, what is the mitigation plan?

Here are the typical **mitigation methods**:

Method	Null Route	Self-Mitigate	100% Cloud	Hybrid
Operation impact	IP got blocked	Can access as usual	Access as usual, but may be higher latency	Can access as usual
Cost to implement	FREE	Expensive	Manageable Cost	Expensive
Limitation	Not all IX support Null route	High cost and high technical skills	Latency issue	Skill set and cost.
Impact to the provider	Customer may be leaving	\$\$\$	\$	\$\$\$\$

Updates from MYIX:

MyIX route server is now **supporting blackhole community**

It may help on reducing the DDoS attacks from MyIX peering members that learned the route from MyIX route server

04

How do we Mitigate DDoS attacks at IP ServerOne?

We send flows to our Network Traffic Analyzer

netflow will be sending from all our border routers

Time required for a DDoS Detection:

It may be taking less than <u>90 seconds</u> to complete the **DDoS detection + mitigation**

At IP ServerOne, the Anti-DDoS is based on hybrid model **On-Premise device + Cloud based protection**

The reason why we are mitigating the attacks ourselves are:

Most of the cloud providers are located overseas

70% of our bandwidth is going through MyIX

Cloud providers could have false positive sometime. Troubleshooting on this is very difficult; we are using **BGP communities to do traffic engineering**; so that those targetted customers will be coming through our own link rather than other cloud providers.

How do we deploy the mitigation device:

- When the victim's server IP is under attack
- The detector will **advertise a /32 over to all borders router**, so that all traffic towards the victim server will be next-hop to the filtering device for cleaning purpose
- Traffic towards other servers is not affected

What does the Anti-DDoS filter do?

05.

Where to **START?**

To combat against a DDoS, let's start with detection process first:

Commercial solution= you can visit our booth Open-source solution= fastnetmon (we highly recommend trying this)

FAS1 **ETMON**

06.

ANY QUESTIONS?

Thanks

OUR INFRASTRUCTURE; YOUR GROWTH

E-mail: cllee@ip.my Mobile: +6 012-331 9286

9

IP ServerOne Solutions Sdn. Bhd. (800140-T) A-1-1 & A-1-2, Block A, Glomac Damansara, Jalan Damansara, 60000 Kuala Lumpur, Wilayah Persekutuan, Malaysia.

03 2026 1688 www.ipserverone.com

ISO Certificate No: IS 651738